Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.22.24303193

ABSTRACT

This study investigated the effectiveness of natural infection in preventing reinfection with the JN.1 variant during a large JN.1 wave in Qatar, using a test-negative case-control study design. The overall effectiveness of previous infection in preventing reinfection with JN.1 was estimated at only 1.8% (95% CI: -9.3-12.6%). This effectiveness demonstrated a rapid decline over time since the previous infection, decreasing from 82.4% (95% CI: 40.9-94.7%) within 3 to less than 6 months after the previous infection to 50.9% (95% CI: -11.8-78.7%) in the subsequent 3 months, and further dropping to 18.3% (95% CI: -34.6-56.3%) in the subsequent 3 months. Ultimately, it reached a negligible level after one year. The findings show that the protection of natural infection against reinfection with JN.1 is strong only among those who were infected within the last 6 months, with variants such as XBB*. However, this protection wanes rapidly and is entirely lost one year after the previous infection. The findings support considerable immune evasion by JN.1.

2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.28.23290641

ABSTRACT

Background: This study assessed the evolution of COVID-19 severity and fatality by utilizing rigorous and standardized criteria that were consistently applied throughout the pandemic in Qatar. Methods: A national cohort study was conducted on Qataris, using data on COVID-19 acute-care and ICU hospitalizations, as well as severe, critical, and fatal COVID-19 cases classified according to the World Health Organization criteria. Results: The cumulative incidence of severe, critical, or fatal COVID-19 after 3.14 years of follow-up was 0.45% (95% CI: 0.43-0.47%). The incidence rate for severe, critical, or fatal COVID-19 throughout the pandemic was 1.43 (95% CI: 1.35-1.50) per 1,000 person-years. In the pre-omicron phase, first omicron wave, and combined phases, it was 2.01 (95% CI: 1.90-2.13), 3.70 (95% CI: 3.25-4.22), and 2.18 (95% CI: 2.07-2.30) per 1,000 person-years, respectively. The post-first omicron phase saw a drastic drop to 0.10 (95% CI: 0.08-0.14) per 1,000 person-years, a 95.4% reduction. Among all severe, critical, and fatal cases, 99.5% occurred during the primary infection. The cumulative incidence of fatal COVID-19 was 0.042% (95% CI: 0.036-0.050%), with an incidence rate of 0.13 (95% CI: 0.11-0.16) per 1,000 person-years. In the post-first omicron phase, the incidence rate of fatal COVID-19 decreased by 90.0% compared to earlier stages. Both severity and fatality exhibited an exponential increase with age and a linear increase with the number of coexisting conditions. Conclusions: The conclusion of the first omicron wave was a turning point in the severity of the pandemic. While vaccination and enhanced case management reduced severity gradually, the rapid accumulation of natural immunity during the initial omicron wave appears to have played the crucial role in driving this shift in severity.


Subject(s)
COVID-19
3.
Front Immunol ; 13: 984784, 2022.
Article in English | MEDLINE | ID: covidwho-2318356

ABSTRACT

In 2021, Qatar experienced considerable incidence of SARS-CoV-2 infection that was dominated sequentially by the Alpha, Beta, and Delta variants. Using the cycle threshold (Ct) value of an RT-qPCR-positive test to proxy the inverse of infectiousness, we investigated infectiousness of SARS-CoV-2 infections by variant, age, sex, vaccination status, prior infection status, and reason for testing in a random sample of 18,355 RT-qPCR-genotyped infections. Regression analyses were conducted to estimate associations with the Ct value of RT-qPCR-positive tests. Compared to Beta infections, Alpha and Delta infections demonstrated 2.56 higher Ct cycles (95% CI: 2.35-2.78), and 4.92 fewer cycles (95% CI: 4.67- 5.16), respectively. The Ct value declined gradually with age and was especially high for children <10 years of age, signifying lower infectiousness in small children. Children <10 years of age had 2.18 higher Ct cycles (95% CI: 1.88-2.48) than those 10-19 years of age. Compared to unvaccinated individuals, the Ct value was higher among individuals who had received one or two vaccine doses, but the Ct value decreased gradually with time since the second-dose vaccination. Ct value was 2.07 cycles higher (95% CI: 1.42-2.72) for those with a prior infection than those without prior infection. The Ct value was lowest among individuals tested because of symptoms and was highest among individuals tested as a travel requirement. Delta was substantially more infectious than Beta. Prior immunity, whether due to vaccination or prior infection, is associated with lower infectiousness of breakthrough infections, but infectiousness increases gradually with time since the second-dose vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/prevention & control , Child , Humans , Qatar , Vaccination , Young Adult
5.
Lancet Infect Dis ; 23(7): 816-827, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2254499

ABSTRACT

BACKGROUND: Long-term effectiveness of COVID-19 mRNA boosters in populations with different previous infection histories and clinical vulnerability profiles is inadequately understood. We aimed to investigate the effectiveness of a booster (third dose) vaccination against SARS-CoV-2 infection and against severe, critical, or fatal COVID-19, relative to that of primary-series (two-dose) vaccination over a follow-up duration of 1 year. METHODS: This observational, matched, retrospective, cohort study was done on the population of Qatar in people with different immune histories and different clinical vulnerability to infection. The source of data are Qatar's national databases for COVID-19 laboratory testing, vaccination, hospitalisation, and death. Associations were estimated using inverse-probability-weighted Cox proportional-hazards regression models. The primary outcome of the study is the effectiveness of COVID-19 mRNA boosters against infection and against severe COVID-19. FINDINGS: Data were obtained for 2 228 686 people who had received at least two vaccine doses starting from Jan 5, 2021, of whom 658 947 (29·6%) went on to receive a third dose before data cutoff on Oct 12, 2022. There were 20 528 incident infections in the three-dose cohort and 30 771 infections in the two-dose cohort. Booster effectiveness relative to primary series was 26·2% (95% CI 23·6-28·6) against infection and 75·1% (40·2-89·6) against severe, critical, or fatal COVID-19, during 1-year follow-up after the booster. Among people clinically vulnerable to severe COVID-19, effectiveness was 34·2% (27·0-40·6) against infection and 76·6% (34·5-91·7) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 61·4% (60·2-62·6) in the first month after the booster but waned thereafter and was modest at only 15·5% (8·3-22·2) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2·75* subvariant incidence, effectiveness was progressively negative albeit with wide CIs. Similar patterns of protection were observed irrespective of previous infection status, clinical vulnerability, or type of vaccine (BNT162b2 vs mRNA-1273). INTERPRETATION: Protection against omicron infection waned after the booster, and eventually suggested a possibility for negative immune imprinting. However, boosters substantially reduced infection and severe COVID-19, particularly among individuals who were clinically vulnerable, affirming the public health value of booster vaccination. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core (both at Weill Cornell Medicine-Qatar), Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, and Qatar University Biomedical Research Center.


Subject(s)
Biomedical Research , COVID-19 , Humans , Retrospective Studies , Cohort Studies , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.28.23289254

ABSTRACT

Background: Waning of natural infection protection and vaccine protection highlight the need to evaluate changes in population immunity over time. Population immunity of previous SARS-CoV-2 infection or of COVID-19 vaccination are defined, respectively, as the overall protection against reinfection or against breakthrough infection at a given point in time in a given population. Methods: We estimated these population immunities in Qatar population between July 1, 2020 and November 30, 2022, to discern generic features of the epidemiology of SARS-CoV-2. Effectiveness of previous infection, mRNA primary-series vaccination, and mRNA booster (third-dose) vaccination in preventing infection were estimated, month by month, using matched, test-negative, case-control studies. Findings: Previous-infection effectiveness against reinfection was strong before emergence of Omicron, but declined with time after a wave and rebounded after a new wave. Effectiveness dropped immediately after Omicron emergence from 88.3% (95% CI: 84.8-91.0%) in November 2021 to 51.0% (95% CI: 48.3-53.6%) in December 2021. Primary-series effectiveness against infection was 84.0% (95% CI: 83.0-85.0%) in April 2021, soon after introduction of vaccination, before waning gradually to 52.7% (95% CI: 46.5-58.2%) by November of 2021. Effectiveness declined linearly by ~1 percentage point every 5 days. After Omicron emergence, effectiveness dropped suddenly from 52.7% (95% CI: 46.5-58.2%) in November 2021 to negligible levels in December 2021. Booster effectiveness dropped immediately after Omicron emergence from 83.0% (95% CI: 65.6 -91.6%) in November 2021 to 32.9% (95% CI: 26.7-38.5%) in December 2021, and continued to decline thereafter. Effectiveness of previous infection and vaccination against severe, critical, or fatal COVID-19 were generally >80% throughout the study duration. Interpretation: High population immunity may not be sustained beyond a year. This creates fertile grounds for repeated waves of infection to occur, but these waves may increasingly exhibit a benign pattern of infection. Funding: The Biomedical Research Program and the Biostatistics, Epidemiology, and the Biomathematics Research Core, both at Weill Cornell Medicine-Qatar, Ministry of Public Health, Hamad Medical Corporation, Sidra Medicine, Qatar Genome Programme, Qatar University Biomedical Research Center, and Qatar University Internal Grant ID QUCG-CAS-23/24-114.


Subject(s)
COVID-19 , Breakthrough Pain
8.
Healthcare (Basel) ; 11(2)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2227373

ABSTRACT

The uncertainty surrounding the effect of infectious diseases on nursing students' attitudes toward the nursing profession worldwide exists. This study sought to examine the association between fear of infectious diseases and students' attitudes toward the nursing profession. METHODS: This quantitative descriptive cross-sectional study used a convenience sample of 477 students enrolled in nursing programs from three universities located in urban and non-urban areas in Saudi Arabia. RESULTS: The study revealed a positive attitude toward nursing and minimal fear of infectious diseases. Junior nursing students reported significantly better attitudes and preferences toward the nursing profession than senior nursing students. Students who reported positive attitudes toward the nursing profession significantly had no intension to discontinue or transfer from nursing programs, whereas students with low attitudes reported significant intention to discontinue their enrollment in the nursing programs. Students in urban universities reported higher significant fear of infectious diseases compare to non-urban. The study revealed a significant negative correlation between fear of infectious diseases and students' preference for the nursing profession. CONCLUSIONS: Nurse educators need to support senior nursing students' attitudes toward the nursing profession and reduce their fear of infectious diseases, particularly among students studying in urban areas.

10.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.29.23285152

ABSTRACT

Background: Risk of short- and long-term all-cause mortality after a primary SARS-CoV-2 infection is inadequately understood. Methods: A national, matched, retrospective cohort study was conducted in Qatar to assess the risk of all-cause mortality in the national cohort of people infected with SARS-CoV-2 compared with a reference national control cohort of uninfected persons. Associations were estimated using Cox proportional-hazards regression models. Results: Among unvaccinated persons, within 90 days after primary infection, adjusted hazard ratio (aHR) comparing incidence of death in the primary-infection cohort with the infection-naive cohort was 1.19 (95% CI: 1.02-1.39). The aHR was 1.34 (95% CI: 1.11-1.63) in persons more clinically vulnerable to severe COVID-19 and 0.94 (95% CI: 0.72-1.24) in those less clinically vulnerable to severe COVID-19. In subsequent follow-up, the aHR was 0.50 (95% CI: 0.37-0.68). The aHR was 0.41 (95% CI: 0.28-0.58) in months 3-7 after the primary infection and 0.76 (95% CI: 0.46-1.26) in subsequent months. The aHR was 0.37 (95% CI: 0.25-0.54) in persons more clinically vulnerable to severe COVID-19 and 0.77 (95% CI: 0.48-1.24) in those less clinically vulnerable to severe COVID-19. Among vaccinated persons, no evidence was found for differences in incidence of death in the primary-infection versus infection-naive cohorts, even among persons more clinically vulnerable to severe COVID-19. Conclusions: COVID-19 mortality in Qatar appears primarily driven by forward displacement of deaths of individuals with relatively short life expectancy and more clinically vulnerable to severe COVID-19. Vaccination negated the mortality displacement by preventing early deaths.


Subject(s)
Infections , Hallucinations , Death , COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.29.22282864

ABSTRACT

Background: Coronavirus Disease 2019 (COVID-19) vaccine antigen dosage may affect protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but direct evidence to quantify this effect is lacking. Methods: A matched, retrospective, cohort study that emulated a randomized control trial was conducted in Qatar between February 3, 2022 and November 8, 2022, to provide a head-to-head, controlled comparison of protection induced by two antigen dosages of the BNT162b2 vaccine. The study compared incidence of omicron infection in the national cohort of adolescents 12 years of age who received the two-dose primary-series of the 30-g BNT162b2 vaccine to that in the national cohort of adolescents 11 years of age who received the two-dose primary-series of the pediatric 10-g BNT162b2 vaccine. Associations were estimated using Cox proportional-hazard regression models. Results: Among adolescents with no record of prior infection, cumulative incidence of infection was 6.0% (95% CI: 4.9-7.3%) for the 30-g cohort and 7.2% (95% CI: 6.1-8.5%) for the 10-g cohort, 210 days after the start of follow-up. Incidence during follow-up was dominated by omicron subvariants including, consecutively, BA.1/BA.2, BA.4/BA.5, BA.2.75*, and XBB. The adjusted hazard ratio comparing incidence of infection in the 30-g cohort to the 10-g cohort was 0.77 (95% CI: 0.60-0.98). Corresponding relative effectiveness was 23.4% (95% CI: 1.6-40.4%). Relative effectiveness was -3.3% (95% CI: -68.0-27.5%) among adolescents with a record of prior infection. Conclusions: Three-fold higher BNT162b2 dosage was associated with ~25% higher protection against infection in infection-naive adolescents of similar age. These findings may inform design of future COVID-19 vaccines and boosters for persons of different age groups.


Subject(s)
Coronavirus Infections , COVID-19
12.
Lancet Microbe ; 3(12): e944-e955, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2106236

ABSTRACT

BACKGROUND: Understanding protection conferred by natural SARS-CoV-2 infection versus COVID-19 vaccination is important for informing vaccine mandate decisions. We compared protection conferred by natural infection versus that from the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar. METHODS: We conducted two matched retrospective cohort studies that emulated target trials. Data were obtained from the national federated databases for COVID-19 vaccination, SARS-CoV-2 testing, and COVID-19-related hospitalisation and death between Feb 28, 2020 (pandemic onset in Qatar) and May 12, 2022. We matched individuals with a documented primary infection and no vaccination record (natural infection cohort) with individuals who had received two doses (primary series) of the same vaccine (BNT162b2-vaccinated or mRNA-1273-vaccinated cohorts) at the start of follow-up (90 days after the primary infection). Individuals were exact matched (1:1) by sex, 10-year age group, nationality, comorbidity count, and timing of primary infection or first-dose vaccination. Incidence of SARS-CoV-2 infection and COVID-19-related hospitalisation and death in the natural infection cohorts was compared with incidence in the vaccinated cohorts, using Cox proportional hazards regression models with adjustment for matching factors. FINDINGS: Between Jan 5, 2021 (date of second-dose vaccine roll-out) and May 12, 2022, 104 500 individuals vaccinated with BNT162b2 and 61 955 individuals vaccinated with mRNA-1273 were matched to unvaccinated individuals with a documented primary infection. During follow-up, 7123 SARS-CoV-2 infections were recorded in the BNT162b2-vaccinated cohort and 3583 reinfections were recorded in the matched natural infection cohort. 4282 SARS-CoV-2 infections were recorded in the mRNA-1273-vaccinated cohort and 2301 reinfections were recorded in the matched natural infection cohort. The overall adjusted hazard ratio (HR) for SARS-CoV-2 infection was 0·47 (95% CI 0·45-0·48) after previous natural infection versus BNT162b2 vaccination, and 0·51 (0·49-0·54) after previous natural infection versus mRNA-1273 vaccination. The overall adjusted HR for severe (acute care hospitalisations), critical (intensive care unit hospitalisations), or fatal COVID-19 cases was 0·24 (0·08-0·72) after previous natural infection versus BNT162b2 vaccination, and 0·24 (0·05-1·19) after previous natural infection versus mRNA-1273 vaccination. Severe, critical, or fatal COVID-19 was rare in both the natural infection and vaccinated cohorts. INTERPRETATION: Previous natural infection was associated with lower incidence of SARS-CoV-2 infection, regardless of the variant, than mRNA primary-series vaccination. Vaccination remains the safest and most optimal tool for protecting against infection and COVID-19-related hospitalisation and death, irrespective of previous infection status. FUNDING: The Biomedical Research Program and the Biostatistics, Epidemiology, and Biomathematics Research Core, Weill Cornell Medicine-Qatar; Qatar Ministry of Public Health; Hamad Medical Corporation; Sidra Medicine; Qatar Genome Programme; and Qatar University Biomedical Research Center.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Reinfection , Retrospective Studies , RNA, Messenger , SARS-CoV-2 , BNT162 Vaccine , COVID-19 Testing , COVID-19 Vaccines , Qatar/epidemiology , Public Health
13.
N Engl J Med ; 387(20): 1865-1876, 2022 11 17.
Article in English | MEDLINE | ID: covidwho-2096907

ABSTRACT

BACKGROUND: The BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) has been authorized for use in children 5 to 11 years of age and adolescents 12 to 17 years of age but in different antigen doses. METHODS: We assessed the real-world effectiveness of the BNT162b2 vaccine against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children and adolescents in Qatar. To compare the incidence of SARS-CoV-2 infection in the national cohort of vaccinated participants with the incidence in the national cohort of unvaccinated participants, we conducted three matched, retrospective, target-trial, cohort studies - one assessing data obtained from children 5 to 11 years of age after the B.1.1.529 (omicron) variant became prevalent and two assessing data from adolescents 12 to 17 years of age before the emergence of the omicron variant (pre-omicron study) and after the omicron variant became prevalent. Associations were estimated with the use of Cox proportional-hazards regression models. RESULTS: Among children, the overall effectiveness of the 10-µg primary vaccine series against infection with the omicron variant was 25.7% (95% confidence interval [CI], 10.0 to 38.6). Effectiveness was highest (49.6%; 95% CI, 28.5 to 64.5) right after receipt of the second dose but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI, 21.5 to 63.3) among children 5 to 7 years of age and 16.6% (95% CI, -4.2 to 33.2) among those 8 to 11 years of age. Among adolescents, the overall effectiveness of the 30-µg primary vaccine series against infection with the omicron variant was 30.6% (95% CI, 26.9 to 34.1), but many adolescents had been vaccinated months earlier. Effectiveness waned over time since receipt of the second dose. Effectiveness was 35.6% (95% CI, 31.2 to 39.6) among adolescents 12 to 14 years of age and 20.9% (95% CI, 13.8 to 27.4) among those 15 to 17 years of age. In the pre-omicron study, the overall effectiveness of the 30-µg primary vaccine series against SARS-CoV-2 infection among adolescents was 87.6% (95% CI, 84.0 to 90.4) and waned relatively slowly after receipt of the second dose. CONCLUSIONS: Vaccination in children was associated with modest, rapidly waning protection against omicron infection. Vaccination in adolescents was associated with stronger, more durable protection, perhaps because of the larger antigen dose. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
BNT162 Vaccine , COVID-19 , Vaccine Efficacy , Adolescent , Child , Humans , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Qatar/epidemiology , Retrospective Studies , SARS-CoV-2 , Child, Preschool , Vaccine Efficacy/statistics & numerical data
14.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.14.22282103

ABSTRACT

Background: Long-term effectiveness of COVID-19 mRNA boosters in populations with different prior infection histories and clinical vulnerability profiles is inadequately understood. Methods: A national, matched, retrospective, target trial cohort study was conducted in Qatar to investigate effectiveness of a third mRNA (booster) dose, relative to a primary series of two doses, against SARS-CoV-2 omicron infection and against severe COVID-19. Associations were estimated using Cox proportional-hazards regression models. Results: Booster effectiveness relative to primary series was 41.1% (95% CI: 40.0-42.1%) against infection and 80.5% (95% CI: 55.7-91.4%) against severe, critical, or fatal COVID-19, over one-year follow-up after the booster. Among persons clinically vulnerable to severe COVID-19, effectiveness was 49.7% (95% CI: 47.8-51.6%) against infection and 84.2% (95% CI: 58.8-93.9%) against severe, critical, or fatal COVID-19. Effectiveness against infection was highest at 57.1% (95% CI: 55.9-58.3%) in the first month after the booster but waned thereafter and was modest at only 14.4% (95% CI: 7.3-20.9%) by the sixth month. In the seventh month and thereafter, coincident with BA.4/BA.5 and BA.2.75* subvariant incidence, effectiveness was progressively negative reaching -20.3% (95% CI: -55.0-29.0%) after one year of follow-up. Similar levels and patterns of protection were observed irrespective of prior infection status, clinical vulnerability, or type of vaccine (BNT162b2 versus mRNA-1273). Conclusions: Boosters reduced infection and severe COVID-19, particularly among those clinically vulnerable to severe COVID-19. However, protection against infection waned after the booster, and eventually suggested an imprinting effect of compromised protection relative to the primary series. However, imprinting effects are unlikely to negate the overall public health value of booster vaccinations.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Status Epilepticus
15.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.31.22281756

ABSTRACT

Background: Epidemiological evidence for immune imprinting was investigated in immune histories related to vaccination in Qatar from onset of the omicron wave, on December 19, 2021, through September 15, 2022. Methods: Matched, retrospective, cohort studies were conducted to investigate differences in incidence of SARS-CoV-2 reinfection in the national cohort of persons who had a primary omicron infection, but different vaccination histories. History of primary-series (two-dose) vaccination was compared to that of no vaccination, history of booster (three-dose) vaccination was compared to that of two-dose vaccination, and history of booster vaccination was compared to that of no vaccination. Associations were estimated using Cox proportional-hazards regression models. Results: The adjusted hazard ratio comparing incidence of reinfection in the two-dose cohort to that in the unvaccinated cohort was 0.43 (95% CI: 0.38-0.48). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the two-dose cohort was 1.38 (95% CI: 1.16-1.65). The adjusted hazard ratio comparing incidence of reinfection in the three-dose cohort to that in the unvaccinated cohort was 0.53 (95% CI: 0.44-0.63). All adjusted hazard ratios appeared stable over 6 months of follow-up. Divergence in cumulative incidence curves in all comparisons increased markedly when incidence was dominated by BA.4/BA.5 and BA.2.75*. No reinfection in any cohort progressed to severe, critical, or fatal COVID-19. Conclusions: History of primary-series vaccination enhanced immune protection against omicron reinfection, but history of booster vaccination compromised protection against omicron reinfection. These findings do not undermine the short-term public health utility of booster vaccination.


Subject(s)
COVID-19
16.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.29.22281606

ABSTRACT

The BA.2.75* sublineage of SARS-CoV-2 B.1.1.529 (omicron) variant escapes neutralizing antibodies. We estimated effectiveness of prior infection in preventing reinfection with BA.2.75* using a test-negative, case-control study design. Effectiveness of prior pre-omicron infection against BA.2.75* reinfection, irrespective of symptoms, was 6.0% (95% CI: 1.5-10.4%). Effectiveness of prior BA.1/BA.2 infection was 49.9% (95% CI: 47.6-52.1%) and of prior BA.4/BA.5 infection was 80.6% (95% CI: 71.2-87.0). Effectiveness of prior pre-omicron infection followed by BA.1/BA.2 infection against BA.2.75* reinfection was 56.4% (95% CI: 50.5-61.6). Effectiveness of prior pre-omicron infection followed by BA.4/BA.5 infection was 91.6% (95% CI: 65.1-98.0). Analyses stratified by time since prior infection indicated waning of protection since prior infection. Analyses stratified by vaccination status indicated that protection from prior infection is higher among those vaccinated, particularly among those who combined index-virus-type vaccination with a prior omicron infection. A combination of pre-omicron and omicron immunity is most protective against BA.2.75* reinfection. Viral immune evasion may have accelerated recently to overcome high immunity in the global population, thereby also accelerating waning of natural immunity.

18.
J Travel Med ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2051490

ABSTRACT

BACKGROUND: The future of the SARS-CoV-2 pandemic hinges on virus evolution and duration of immune protection of natural infection against reinfection. We investigated duration of protection afforded by natural infection, the effect of viral immune evasion on duration of protection, and protection against severe reinfection, in Qatar, between February 28, 2020 and June 5, 2022. METHODS: Three national, matched, retrospective cohort studies were conducted to compare incidence of SARS-CoV-2 infection and COVID-19 severity among unvaccinated persons with a documented SARS-CoV-2 primary infection, to incidence among those infection-naïve and unvaccinated. Associations were estimated using Cox proportional-hazard regression models. RESULTS: Effectiveness of pre-Omicron primary infection against pre-Omicron reinfection was 85.5% (95% CI: 84.8-86.2%). Effectiveness peaked at 90.5% (95% CI: 88.4-92.3%) in the 7th month after the primary infection, but waned to ~ 70% by the 16th month. Extrapolating this waning trend using a Gompertz curve suggested an effectiveness of 50% in the 22nd month and < 10% by the 32nd month. Effectiveness of pre-Omicron primary infection against Omicron reinfection was 38.1% (95% CI: 36.3-39.8%) and declined with time since primary infection. A Gompertz curve suggested an effectiveness of < 10% by the 15th month. Effectiveness of primary infection against severe, critical, or fatal COVID-19 reinfection was 97.3% (95% CI: 94.9-98.6%), irrespective of the variant of primary infection or reinfection, and with no evidence for waning. Similar results were found in sub-group analyses for those ≥50 years of age. CONCLUSIONS: Protection of natural infection against reinfection wanes and may diminish within a few years. Viral immune evasion accelerates this waning. Protection against severe reinfection remains very strong, with no evidence for waning, irrespective of variant, for over 14 months after primary infection.

20.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046469

ABSTRACT

In 2021, Qatar experienced considerable incidence of SARS-CoV-2 infection that was dominated sequentially by the Alpha, Beta, and Delta variants. Using the cycle threshold (Ct) value of an RT-qPCR-positive test to proxy the inverse of infectiousness, we investigated infectiousness of SARS-CoV-2 infections by variant, age, sex, vaccination status, prior infection status, and reason for testing in a random sample of 18,355 RT-qPCR-genotyped infections. Regression analyses were conducted to estimate associations with the Ct value of RT-qPCR-positive tests. Compared to Beta infections, Alpha and Delta infections demonstrated 2.56 higher Ct cycles (95% CI: 2.35-2.78), and 4.92 fewer cycles (95% CI: 4.67- 5.16), respectively. The Ct value declined gradually with age and was especially high for children <10 years of age, signifying lower infectiousness in small children. Children <10 years of age had 2.18 higher Ct cycles (95% CI: 1.88-2.48) than those 10-19 years of age. Compared to unvaccinated individuals, the Ct value was higher among individuals who had received one or two vaccine doses, but the Ct value decreased gradually with time since the second-dose vaccination. Ct value was 2.07 cycles higher (95% CI: 1.42-2.72) for those with a prior infection than those without prior infection. The Ct value was lowest among individuals tested because of symptoms and was highest among individuals tested as a travel requirement. Delta was substantially more infectious than Beta. Prior immunity, whether due to vaccination or prior infection, is associated with lower infectiousness of breakthrough infections, but infectiousness increases gradually with time since the second-dose vaccination.

SELECTION OF CITATIONS
SEARCH DETAIL